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ABSTRACT

Background: The use of radiation therapy for medulloblastoma can affect
children’s visual system. We estimated children’s visual system complication
probability in the craniospinal irradiation (CSI) technique with three-
dimensional conformal radiotherapy (3D-CRT). Materials and Methods: CSI of
fifteen medulloblastoma patients and a phantom were planned with 6 MV
photon beams and 23.4 Gy prescribed dose. The doses of lenses were
measured using thermoluminescence dosimeters (TLD). The delivered doses
Mohammad B. Tavakoli, PhD., and complication probabilities were calculated based on the equivalent
Fax: + 98 313 668 8597 uniform dose (EUD) model to each contoured organ, including the bilateral
E-mail: lenses, optic nerves, retinas and optic chiasm. Results: The received dose for
mohamadbtavakoli@gmail.com each organ was less than the tolerance value (p<0.001), except for the eye
lens. The normal tissue complication probability (NTCP) values for all of the
organs at risk (OAR) were found insignificant. The discrepancies of calculated
and measured doses for the right and left lenses were 6.35% and 6.23%
(p<0.001), respectively. Conclusion: The results of this study showed based
on the International Commission on Radiological Protection (ICRP) publication
118 that children with medulloblastoma cancer treated with CSI with 3D-CRT
method are susceptible to cataract complication.
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(3D-CRT) is a standard technique for treating
this cancer nowadays ).

INTRODUCTION

Medulloblastoma is a primitive neuroectoder-
mal tumor (PNET) and originates from the
cerebellum or fourth ventricle. It is one of the
most common tumors of the central nervous
system (CNS) in children . 2. The main
treatments for such patients are craniospinal
irradiation (CSI) and chemotherapy. CSI
technique consists of a pair of lateral parallel
opposed fields to treat the brain and one or two
posterior fields to the spinal axis with a boost
consisting of four different gantry angle fields,
two opposing fields of the posterior fossa (3.4
Three-dimensional conformal radiotherapy

The aim of radiation therapy is to deliver
prescribed dose to the tumor ). It has been
shown that head and neck external radiotherapy
causes inevitably radiation doses delivered to
healthy tissues and organs at risk (OAR), due to
primary and stray beams. Brain radiotherapy
has been reported to produce late effects in the
visual system such as visual impairment,
cataract, radiation retinopathy and optic
neuropathy (26-10) It can be avoided blindness
due to lens opacity by surgery, but there is no
proven effective treatment for blindness due to
retina, optic nerve and optic chiasm injury (6.11),
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Several biological models are existed
predicting the risk of late normal tissue
complication based on the physical dose
distribution and irradiated volume. In recent
years, many treatment plans have evaluated and
ranked using radiobiological models in term of
expected late occurring deterministic sequel
(12-14),

Studies of complication probability for
medulloblastoma patients were mostly focused
on the intellectual problems and few studies
have been done regarding the visual system
complications, according to increasing the
survival rate in recent decades (15-17). Brodin et.
al. estimated insignificant incidence of
complication for blindness rate due to optic
nerve injury following 23.4 Gy CSI in photon
3D-CRT technique, using the linear function
model [4]. In their study, it was not calculated
normal tissue complication probabilities (NTCP)
for other parts of the visual system. None of the
previous studies estimated complication
probability for the child’s visual system
completely, using the equivalent uniform dose
(EUD) model. The aim of this clinical
investigation was to estimate the cataract, optic
neuropathy and retinopathy due to CSI, using
the evaluation of the radiobiological competence
of the EUD model.

MATERIALS AND METHODS

Contouring and Treatment Planning

It was studied fifteen pediatric
medulloblastoma patients with standard risks
(10 males, 5 females), with a median age of
7.8+3.1 (4-13 years), who underwent CSI in the
supine positions. The current study was
approved by the Isfahan University of Medical
Sciences Review-board of Research Ethics
(approved April 9, 2019; Registration number
IRMULMED.REC.1398.003).

Treatment plans were generated using
computed tomography (CT) images on Prowess
Panther treatment planning system (TPS)
version 5.5. A radiation oncologist contoured the
clinical target volume (CTV) including the whole
brain and spinal cord, as well as OARs including
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the right and left optic nerves, lenses, retinas,
eyeballs, lacrimal glands, parotid, lungs, kidneys,
cochleas, esophagus, larynx, heart, brain stem,
thyroid gland and optic chiasm.

In this study, the dose of right and left optic
nerves, lenses, retinas and optic chiasm were
evaluated. The whole posterior fossa is typically
contoured as the site of primary tumor. For
possible positioning errors, the planning target
volume (PTV) and boost plans were created by
expanding the whole brain, spinal cord (the
CTV) and posterior fossa by 10, 5 and 10 mm,
respectively, in all directions. The CTV also
included the cribriform plate. The OARs dose
constraints were based on the International
Commission on Radiological Protection (ICRP)
publication 118, the quantitative analysis of
normal tissue effects in the clinic (QUANTEC),
and Emami et al. (18-20),

CSI included a pair of lateral parallel opposed
fields to treat the whole brain and one posterior
field to the spinal axis. A 2-3 mm skin gap was
left between the cranial and spinal fields. Based
on patient’s head position, collimator of the
cranial fields was rotated to match with the
superior border of the spinal field to uniform the
treatment of the entire craniospinal target
volume. The lower border of the cranial fields
was placed at C4-C¢ to decrease the risk of
developing hypothyroidism. The cranial fields
didn’t pass transversely the shoulders. Multileaf
collimators (MLC) were used to shape the fields,
and to protect the lenses and eyeballs from
primary photon beams, except for partial of the
PTV. Oral cavity was shielded. The posterior
fossa was boosted with four oblique fields after
completion of CSI (- 4.21),

The plans for the patients were based on 23.4
Gy to the PTV and 54 Gy to the whole posterior
fossa, using a 6 MV siemens Artiste linear
accelerator and an isocentric technique
delivering 1.8 Gy fractions daily and 5 fractions
in a week. Each plan was normalized to its
isocenter (). According to ICRU Report No. 50,
the entire PTV received at least 95% of the
prescription dose (22). In order to study the
patient’s treatment plan, CSI plan was composed
with boost plan and a composite plan was
created. The OARs doses were derived from
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DVH.

Phantom Dosimetry

TPS calculations for eye lenses may not be
accurate enough because they are located under
shielding MLCs (23). Thus, it was used a pediatric
Perspex phantom to measure the eye lens doses
accurately. Treatment plans were generated
using 3 mm thick CT images in the supine
position and it was embedded a cubic lithium
fluoride (LiF: MgTi) thermoluminescence
dosimeter (TLD) chip (3 mmx3 mmx1 mm) in
each hole of phantom instead of the lenses. The
TLDs were calibrated by 6 MV photon beams. At
first, it was measured each TLD’s individual
calibration factor (ICF) with 100 cGy dose. Then,
in order to determine batch calibration factor
(BCF), the dosimeters were divided into seven
groups. A group wasn't exposed, rather used as
control and others were irradiated with 30, 60,
90, 120, 150 and 180 cGy doses (2425, It was
used a SOLARO-2A Model TLD reader (NE
company) to measure dose absorbed by the
TLDs. Then the phantom was irradiated in the
similar therapeutic position. TLD measurements
were obtained three times.

EUD Mathematical Model

Several models for prediction of NTCP are
recommended (12.26-28). The NTCP estimates the
probability of a complication after uniform dose
of a partial volume of organ or tissue. For this
purpose, the EUD algorithm is used. The EUD is
the uniform dose, if delivered over the same
number of fractions to the target volume as the
non-uniform dose distribution of interest that
gives the same radiobiological effect. In order to
estimate radiation induced visual system
complication probability, EUD model suggested
by Niemierko et al. was used in this study and
normal tissue tolerance data by Emami et al. (12
13,29), The EUD is defined as equation (1):

i
EUD= (X, viDi®)a (1)

Where, vi is a parameter with no unit,
expressing the ith partial volume of organ that
receives Didose in Gy. In addition, a is a unitless
parameter which is specific for each organ and
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describes the volume effect. The EUD is
substituted in the following equation (2) to
calculate the NTCP:

1
NTCP = —pp———— @

14550 e

TDs is tolerance dose for the normal tissue at
50% NTCP after radiotherapy (29). yso is a model
parameter with no unit that is specific for each
organ and explains the slope of the
dose-response curve. The value of visual system
radiobiological parameters was compiled by
Niemierko etal. (1230, According to The TPS
capability to show the NTCP results with two
decimal numbers, the NTCP (%) values were
calculated to five decimal places.

Statistical analysis

The one sample t-test was used to compare
the calculated OARs dose results with tolerance
data. This test was also used to evaluate mean
differences between measured and calculated
values. There was a statistically significant
difference (p<0.05). Statistical analysis was
performed by SPSS software version 22.0.

RESULTS

An example of the dose distribution of brain
PTV was shown in figure 1. As shown, all the
treatment region was covered with the 95%
prescribed dose and the optic nerves, optic
chiasm and retinas were entirely within the
treatment region. Although the lenses were
shielded by the sufficient MLCs, they received a
dose due to the proximity of the treatment
region and photon decreasing beyond the target
slowly. Table 1 summarizes the mean calculated
doses, the measured doses with standard
deviation (SD) values and the differences
between the values for the right and left lenses.
The results of other treatment characteristics of
studied patients with SD values by the TPS are
presented in table 2. For all the studied patients,
a significant difference was seen in the OAR
received dose and threshold dose (p<0.001).
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Table 1. Measured and calculated radiation dose to the eye lens.

,2574.0 cGy

{2340.0 cGy
2223.0 cGy
1989.0 cGy

1989.0 cGy

Calculated dose Range Measured dose Range Measured vs. calculated doses
(cGy) £ SD & (cGy) £ SD & % P value
Right lens | 533.05 +149.78 | 223.5-727.1| 569.22+1.75 | 567.16-571.43 6.35 <0.001
Left lens | 521.87 £ 152.95 | 204.6-695.3 | 556.52 +2.35 | 553.81-559.55 6.23 <0.001
Table 2. Treatment characteristics of the studied patients.
Characteristic Quality £ SD Range
Right lens
EUD (cGy) 605.06 + 172.39 223.9-832
NTCP (%) 1.76 £1.21 0.02-4.37
Left lens
EUD (cGy) 583.22 +178.42 214.9-779.2
NTCP (%) 1.59+1.06 0.02-3.39
Right optic nerve
D max (cGY) 3228.71 £ 108.45 3030.1-3481.9
EUD (cGy) 2947.81 +126.79 2801.5-3252.8
NTCP (%) 0.0086 + 0.0053 0.00411-0.0247
Left optic nerve
D max (cGY) 3137.5+87.61 3015.5-3288
EUD (cGy) 2898.06 £ 93.32 2794.5-3080.3
NTCP (%) 0.0066 + 0.00288 0.00398-0.0128
Optic chiasm
D max (€GY) 5084.08 + 115.42 4831.5-5261.6
EUD (cGy) 4749.96 + 116.32 4535.1-4946.9
NTCP (%) 2.35+0.67 1.313-3.639
Right retina
D max (cGy) 2687.83 +136.76 2493.7-2997.4
EUD (cGy) 2519.89 +80.1 2381.2-2662.5
NTCP (%) 0.0524 +0.013 0.03243-0.0792
Left retina
D max (cGY) 2609.12 £ 102.32 2455.8-2786.4
EUD (cGy) 2521.45 +81.93 2411.2-2672.9
NTCP (%) 0.0524 +0.0145 0.03584-0.0817

Figure 1. Isodose distributions for brain fields in the sagittal (a) and axial CT slices (b).

DISCUSSION

The dose received by OARs was calculated
using a TPS and TLD. Then the visual system
complication probability was estimated using
the EUD radiobiological model for standard risk
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of 15 pediatric medulloblastoma patients treated
with photon 3D-CRT.

The TLD measurements showed a significant
difference compared to the TPS (p<0.001) (table
1). This may have been due to three reasons.
First, studies have shown that the TPS’s ability to
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calculate a scattered dose is low, so the dose
received by the lens is less than its actual value.
Second, the small set-up errors due to the dose
gradient near the lens area lead to a large
difference. Third, previous published reports
showed that the small size of the lens affects TPS
calculations and can lead to a large discrepancy
(23,31,32), The differences in this study were in
agreement with the American Association of
Physicists in Medicine Radiation Therapy
Committee Task Group 53 (AAPM TG-53) and as
a consequence of the measured results for the
supine position, the TPS calculations can
estimate the delivered eye lens dose sufficiently
(23,33), Similar results have been reported in
other studies. Hood et al. have measured OARs
received doses with 6 MV photon beams, using
an anthropomorphic phantom in prone position
and reported the lens received dose less than 1
Gy following 4 Gy cranial dose for both the TPS
and TLD values (4. Results in our study are
slightly higher than those in their work, because
of the boost plan considered in our study.
Although the results of this study is not in
accordance with the research by Baghani et. al.
who reported that, however the mean right and
left lens doses of the CSI with 50 cGy and 6 MV
photon beams using a Rando phantom in prone
position are 34% and 28%, respectively 23). A
significant difference between the two studies
may be due to different treatment position and
junction adjustment between the cranial and
spinal fields.

NTCPs are biological models based on
retrospective data collected from the clinical
outcomes on organs and the steepness of the
dose-response relationship mostly based on
normal tissue tolerance values by Emami et al
(12.14), [n 2012, the lens dose tolerance provided
by them was refined as low as 0.5 Gy by ICRP
publication 118 recommendations and was
proved in a long follow-up study for children (6.
20), On the basis of our analysis, the delivered
dose of OARs, except for the lens, were lower
than tolerance data with significant differences
(p<0.001) and the NTCP values of the visual
system were not shown remarkable results
(table 2). Although, the results of the received
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dose by lens were about 10 times higher
compared to the ICRP (>520 cGy vs. 50 cGy)
(table 1), the NTCP value clearly underestimated
possible damage to the lens and the calculated
cataract probability lacked the confirmation of
ICRP result (9. Therefore, the calculated
cataract probability based on published clinical
data by Emami etal was misfit with ICRP
threshold and the model might be misleading for
the lens. It might be safer to focus on the mean
dose by the lens instead of NTCP value. In
another study, Patel etal found the mean lens
received dose about 20 Gy following 23.4 Gy CSI
(33), The high mean dose related to the lens in the
previous study was likely depending on using a
variety of MLCs adjustment near the lens
region. Brodin et al estimated the blindness
NTCP value from the optic nerves slightly higher
than ours (>3%) because of using different
NTCP model (linear function) ®). In summary,
this study suggested for patients had no ocular
disease that although 3D-CRT maybe an optimal
choice based on sparing of the optic nerves,
optic chiasm and retinas, it can’t succeed to
reduce optimally the mean total dose below the
0.5 Gy threshold level to the lenses and it may be
the cause of the incidence of the cataract
complication years after exposure.

The important strength of this study was the
usage of the pediatric anthropomorphic
phantom that provided therapeutic and stray
doses for current photon therapy and enabled us
to determine the most accurate evaluation of the
radiation dose delivered to the OARs. However,
this study also had a limitation that is common
for this topic. This retrospective review only
focused on the TPS results and did not verify
treatment delivery of plans. Performing
pretreatment image-guided radiation therapy
(IGRT) and identifying the eye lens’s position
would be an important component of the full
estimation of cataract complication for CSI due
to high dose gradient near the lens region (23).
Future studies should estimate cataract
complication based on more patients during
long follow-up considering the epidemiological
data included cataract risk factors other than
radiation exposure in these pediatric patients.
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CONCLUSION

The results of this study showed based on the
ICRP publication 118 that children with
medulloblastoma cancer treated with CSI with
3D-CRT method are susceptible to cataract
complication.
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